
An Empirical Evaluation of Method Signature
Similarity in Java Codebases

Mohammad Taha Khan, Mohamed Elhussiny, Billy Tobin
and Muhammad Ali Gulzar

Method Signatures in Java

A method signatures uniquely identify methods within a class

It includes the method name, its parameters, and return type

Method Signatures in Java

package java.util;
public class Arrays {

 @param a the array to be sorted */
 public static void parallelSort(short[] a) {
 int n = a.length;
 if (n <= MIN_ARRAY_SORT_GRAN) {
 . . .
 }
. . .
}

A method signatures uniquely identify methods within a class

It includes the method name, its parameters, and return type

Implementation of the parallelSort method from the

java.util.Arrays class in the Java Standard Library.

Method Signatures in Java

package java.util;
public class Arrays {

 @param a the array to be sorted */
 public static void parallelSort(short[] a) {
 int n = a.length;
 if (n <= MIN_ARRAY_SORT_GRAN) {
 . . .
 }
. . .
}

A method signatures uniquely identify methods within a class

It includes the method name, its parameters, and return type

Class Name Arrays

Method Name parallelSort

Return Type void

Input Parameters [short[] a]

Method Signature

Implementation of the parallelSort method from the

java.util.Arrays class in the Java Standard Library.

Method Signature Similarity

Overloaded Methods

class Array {

// . . .

 public static void parallelSort (short [] a) {

 int n = a.length , p , g ;

 if (n <= MIN_ARRAY_SORT_GRAN || // . . .

}

 public static void parallelSort (int [] a) {

 int n = a.length , p , g ;

 if (n <= MIN_ARRAY_SORT_GRAN || // . . .

}

Method Signature Similarity

Overloaded Methods

class Array {

// . . .

 public static void parallelSort (short [] a) {

 int n = a.length , p , g ;

 if (n <= MIN_ARRAY_SORT_GRAN || // . . .

}

 public static void parallelSort (int [] a) {

 int n = a.length , p , g ;

 if (n <= MIN_ARRAY_SORT_GRAN || // . . .

}

public class ClearOperation {

 @Override

 public int getSyncBackupCount () {

 return
mapServiceContext.getMapContainer(name).getBackupCount();

 }

 @Override

 public int getAsyncBackupCount () {

 return
mapServiceContext.getMapContainer(name).getAsyncBackupCount()
;

}

Textually Similar Methods

Method Signature Similarity

Overloaded Methods

class Array {

// . . .

 public static void parallelSort (short [] a) {

 int n = a.length , p , g ;

 if (n <= MIN_ARRAY_SORT_GRAN || // . . .

}

 public static void parallelSort (int [] a) {

 int n = a.length , p , g ;

 if (n <= MIN_ARRAY_SORT_GRAN || // . . .

}

public class ClearOperation {

 @Override

 public int getSyncBackupCount () {

 return
mapServiceContext.getMapContainer(name).getBackupCount();

 }

 @Override

 public int getAsyncBackupCount () {

 retur
mapServiceContext.getMapContainer(name).getAsyncBackupCount()
;

}

Textually Similar Methods

Methods with similar names or ones overloaded

frequently can lead to confusion and increased

cognitive load for developers.

This leads to potential misuse of these methods,

leading to errors that are hard to identify and debug.

Method Signature Similarity

Overloaded Methods

class Array {

// . . .

 public static void parallelSort (short [] a) {

 int n = a.length , p , g ;

 if (n <= MIN_ARRAY_SORT_GRAN || // . . .

}

 public static void parallelSort (int [] a) {

 int n = a.length , p , g ;

 if (n <= MIN_ARRAY_SORT_GRAN || // . . .

}

public class ClearOperation {

 @Override

 public int getSyncBackupCount () {

 return
mapServiceContext.getMapContainer(name).getBackupCount();

 }

 @Override

 public int getAsyncBackupCount () {

 retur
mapServiceContext.getMapContainer(name).getAsyncBackupCount()
;

}

Textually Similar Methods

public class ClearOperation {

 @Override

 public int getSyncBackupCount () {

 return
mapServiceContext.getMapContainer(name).getBackupCount();

 }

 @Override

 public int getAsyncBackupCount () {

 retur
mapServiceContext.getMapContainer(name).getAsyncBackupCount()
;

}

Research Goals

Assess how widespread method signature similarity in real-
world Java codebases

Explore the effects of both overloaded and textually similar
methods on code quality, maintainability and developer
productivity

Research Questions

How prevalent are methods with similar signatures in large scale

codebases?

How frequently developers use methods with similar signatures?

Do methods with similar signatures have strong correlation with

certain codebase characteristics?

How do methods with similar signatures evolve as software

matures?

Methodology

Total Repositories Collected 167 Repositories

Github Stars Range >3500 Stars

Total Lines of Code Analyzed ~6,400,000 LOC

Total Methods ~1,900,000 Methods

Average Age of Repositories ~ 9 years

1

Methodology

2

CK Java analysis tool is an open-source tool that specializes in
measuring software metrics in Java codebases

Methodology

3

Extracting overloaded methods was straightforward

To identify textually similar methods, used the edit distance
between method names

Methodology

4

For longitudinal analysis we filtered out 40 repositories at random

Collected 25 snapshots evenly distributed across the repository
lifetime

Prevalence of Methods

Overloaded Methods

Prevalence of Methods

4

Overloaded Methods Textually Similar Methods

Prevalence of Methods

4

Overloaded Methods Textually Similar Methods

Both overloaded and text textually similar methods have a
prevalence in leading Java repositories

Frequency of Methods

Frequency of Methods

It is uncommon for a method to be overloaded more

than three times

Method variations with small edit distances are more

widespread

Correlation with Repository Attributes

4

Contributors vs. Similar Methods No of Methods vs. Similar Methods

Correlation with Repository Attributes

4

Contributors vs. Similar Methods No of Methods vs. Similar Methods

Method signature similarity depends on programming
context, coding structure, and requirements, rather than
repository attributes such as contributors, or size

Evolution of Methods

4

Overloaded Methods Textually Similar Methods

Edit distance = 1

Evolution of Methods

4

Overloaded Methods Textually Similar Methods

Edit distance = 1

Overloaded and textually similar methods are introduced

early, reflecting frequent design changes

As code matures, developers rarely modify overloaded

methods and often remove textually similar ones

Takeaways and Future Work

Methods with similar signatures are context dependent and arise from project

requirements

Developer teams should establish naming conventions early to avoid

confusion and cleanup later.

Use tools like Maven and CheckStyle to enforce naming conventions

automatically.

Future Work: Focus on user studies and deeper investigation into

commit notes, issues where we see a significant change

Conclusion

Our study reveals the prevalence and evolution of method signature
similarity in Java and its impact on development practices.

Call to Action: Developers should manage method names carefully to
enhance code maintainability, productivity, and prevent errors.

An Empirical Evaluation of Method Signature Similarity in Java Codebases

Mohammad Taha Khan, Mohamed Elhussiny, Billy Tobin and
Muhammad Ali Gulzar

	Slide 1: An Empirical Evaluation of Method Signature Similarity in Java Codebases
	Slide 2: Method Signatures in Java
	Slide 3: Method Signatures in Java
	Slide 4: Method Signatures in Java
	Slide 5: Method Signature Similarity
	Slide 6: Method Signature Similarity
	Slide 7: Method Signature Similarity
	Slide 8: Method Signature Similarity
	Slide 9: Research Goals
	Slide 10: Research Questions
	Slide 11: Methodology
	Slide 12: Methodology
	Slide 13: Methodology
	Slide 14: Methodology
	Slide 15: Prevalence of Methods
	Slide 16: Prevalence of Methods
	Slide 17: Prevalence of Methods
	Slide 18: Frequency of Methods
	Slide 19: Frequency of Methods
	Slide 20: Correlation with Repository Attributes
	Slide 21: Correlation with Repository Attributes
	Slide 22: Evolution of Methods
	Slide 23: Evolution of Methods
	Slide 24: Takeaways and Future Work
	Slide 25: Conclusion

