An Empirical Evaluation of Method Signature
Similarity in Java Codebases

Mohammad Taha Khan, Mohamed Elhussiny, Billy Tobin

and Muhammad Ali Gulzar

Method Signatures in Java

A method signatures uniquely identify methods within a class

It includes the method name, its parameters, and return type

Method Signatures in Java

A method signatures uniquely identify methods within a class

It includes the method name, its parameters, and return type

package java.util;
public class Arrays {

@param a the array to be sorted */

public static void parallelSort(short[] a) {
int n = a.length;
if (n <= MIN_ARRAY_SORT_GRAN) {

}

i o

Implementation of the parallelSort method from the
java.util.Arrays class in the Java Standard Library.

Method Signatures in Java

A method signatures uniquely identify methods within a class

It includes the method name, its parameters, and return type

Class Name Arrays
Method Name parallelSort
Return Type void

Input Parameters [short[] a]

Method Signature

package java.util:
public c1ass Arrays {

@param a the array to he sorted */

pub11c static| void para11e1Sort(short[] a) {
Ldngens=Tal T engtn;

if (n <= MIN_ARRAY_SORT_GRAN) {
}
}

Implementation of the parallelSort method from the
java.util.Arrays class in the Java Standard Library.

Method Signature Similarity

Overloaded Methods

class Array {

/. ..
public static void parallelSort (short [] a) {

int n = a.length , p, g ;
if (n <= MIN_ARRAY_SORT GRAN || // . . .

}

public static void parallelSort (int [] a) {
int n = a.length , p, g ;

if (n <= MIN_ARRAY_SORT GRAN || // . . .
}

Method Signature Similarity

Overloaded Methods Textually Similar Methods

class Array {

public class ClearOperation {

/... @Override
public static void parallelSort (short [] a) { public int getSyncBackupCount () {
int n = a.length , p, g ; return
. mapServiceContext.getMapContainer(name).getBackupCount();
if (n <= MIN_ARRAY SORT GRAN || // . y
}

@override

public static void parallelSort (int [] a) { public int EEEASYRCEEERUBESIRE () {

int n = a.length , p, g ; return

if (n <= MIN_ARRAY SORT GRAN || // . mapServiceContext.getMapContainer(name).getAsyncBackupCount(»

Method Signature Similarity

Methods with similar names or ones overloaded
@ frequently can lead to confusion and increased
cognitive load for developers.

Iﬁ‘l This leads to potential misuse of these methods,
leading to errors that are hard to identify and debug.

Method Signature Similarity

public class ClearOperation {

@Override

public int GEESYNCBACKUPCOURE () {

return
mapServiceContext.getMapContainer(name).getBackupCount();

}

@Override

public int BEEASYRCBACKUPCOURE () {

retur
mapServiceContext.getMapContainer(name).getAsyncBackupCount()

)

}

Research Goals

Assess how widespread method signature similarity in real-
world Java codebases o

Explore the effects of both overloaded and textually similar

methods on code quality, maintainability and developer
productivity

DEV

Research Questions

How prevalent are methods with similar signatures in large scale
codebases?

How frequently developers use methods with similar signatures?

Do methods with similar signatures have strong correlation with
certain codebase characteristics?

How do methods with similar signatures evolve as software
matures?

Methodology

)

-

GitHub |52

Use CK tool to create
Download top GitHub JSON files for each
Java repositories class, and its
methods

)

public static int doSomeThing() {
System.out.println("Im in int block");
JSON return -13
}
public static void doSomeThing() {
System.out.println("Im in void block™);

block") /\}
111

G

Extract all overloaded
and textually similar

methods

Perform statistical
and longitudnal

analysis

Total Repositories Collected

167 Repositories

Github Stars Range

>3500 Stars

Total Lines of Code Analyzed

~6,400,000 LOC

Total Methods

~1,900,000 Methods

Average Age of Repositories

~ 9 years

Methodology

public static int doSomeThing() {
- System.out.println("Im in int block");
—) JSONYV !] retum -1; '
—
.
GItHub public static void doSomeThing() { l I l I
ava System.out.println("Im in void block™);

Use CK tool to create . .-
Download top GitHub JSON files for each Extract all overl-oa_ded Perform st_atlstlcal
e . and textually similar and longitudnal
Java repositories class, and its .
methods analysis
methods

CK Java analysis tool is an open-source tool that specializes in
measuring software metrics in Java codebases

Methodology

public static int doSomeThing() {

- System.out.println("Im in int block");

-
) JSONYV !] retum -1 '

- — }

—

GitHub public static void doSomeThing() { l I I I

ava System.out.println("Im in void block™);

Use CK tool to create . .-
Download top GitHub JSON files for each =reeEiell overl'oa_ded Perform st_atlstlcal
Javar itori | nd it and textually similar and longitudnal
ava repositories class, a S methods analysis
methods

Extracting overloaded methods was straightforward

To identify textually similar methods, used the edit distance
between method names

Methodology

public static int doSomeThing() {
- System.out.println("Im in int block");
-
—) JSONYV !] retum -1; '
—
GitHub public static void doSomeThing() { l I l I
ava System.out.println("Im in void block™);

Use CK tool to create . .-
Download top GitHub JSON files for each Extract all overloaded Perform statistical
Javar itori | nd it and textually similar and longitudnal
ava repositories class, a S methods analysis
methods

For longitudinal analysis we filtered out 40 repositories at random

Collected 25 snapshots evenly distributed across the repository
lifetime

Prevalence of Methods

e
C
>
@)

@)
»n

2
—
O

=
(%2]
o
Q.
(O]

o

-

- .
5 10 15 20 25
Percentage (%) of Overloaded Methods

Overloaded Methods

Repositories Count

Prevalence of Methods

e
c
S
o

O
0

i)
—_
@)

=
@
o
Q
)

o

-

- .
0 5 10 15 20 25
Percentage (%) of Overloaded Methods

Overloaded Methods

Bl Edit Distance =1
I Edit Distance = 2

5 10 15 20 25 30
Percentage (%) of Textually Similar Methods

Textually Similar Methods

Prevalence of Methods

(). Both overloaded and text textually similar methods have a
WL prevalence in leading Java repositories

Frequency of Methods

Distinct Instances Count
B 1 /1 2 B 3 B 4+

Overloaded Methods

Edit Distance = 1

Edit Distance =2

0 20 40 60 80 100
Percentage (%) of Method Instances

Frequency of Methods

It Is uncommon for a method to be overloaded more
than three times

Method variations with small edit distances are more
widespread

Correlation with Repository Attributes

(7)) n x

= * Overloaded 8 Overloaded

= 30) x Edit Distance = 1 = 30(x Edit Distance = 1

g 25“ + Edit Distance = 2 § 25.x + Edit Distance = 2

= 20] 2. 20{

9 X

= 15, w 121

o) " o

£ 10] £ 10{

- c \

() (D)

© 5; L2 f

) = .

O LR Rl BEA RN, 2 ottt : : Qo ey : ——— . : :
0 100 200 300 400 0 20 40 60 80 100 120 140

Number of Contributors Total Number of Methods (103)

Contributors vs. Similar Methods No of Methods vs. Similar Methods

Correlation with Repository Attributes

Method signature similarity depends on programming
= context, coding structure, and requirements, rather than
repository attributes such as contributors, or size

Repositories

Evolution of Methods

Snapshots (Older to More Recent)

Overloaded Methods

Repositories

IZO%
10%

r0%

I—lO%
‘__- -20%

Snapshots (Older to More Recent)

Textually Similar Methods

Edit distance = 1

Evolution of Methods

Overloaded and textually similar methods are introduced
@' early, reflecting frequent design changes

As code matures, developers rarely modify overloaded
methods and often remove textually similar ones

Takeaways and Future Work

Methods with similar signatures are context dependent and arise from project
requirements

Developer teams should establish naming conventions early to avoid
confusion and cleanup later.

Use tools like Maven and CheckStyle to enforce naming conventions
automatically.

e N
Future Work: Focus on user studies and deeper investigation into

commit notes, issues where we see a significant change
N J

Conclusion

Our study reveals the prevalence and evolution of method signature
similarity in Java and its impact on development practices.

Call to Action: Developers should manage method names carefully to
enhance code maintainability, productivity, and prevent errors.

An Empirical Evaluation of Method Signature Similarity in Java Codebases

Mohammad Taha Khan, Mohamed Elhussiny, Billy Tobin and

Muhammad Ali Gulzar W

	Slide 1: An Empirical Evaluation of Method Signature Similarity in Java Codebases
	Slide 2: Method Signatures in Java
	Slide 3: Method Signatures in Java
	Slide 4: Method Signatures in Java
	Slide 5: Method Signature Similarity
	Slide 6: Method Signature Similarity
	Slide 7: Method Signature Similarity
	Slide 8: Method Signature Similarity
	Slide 9: Research Goals
	Slide 10: Research Questions
	Slide 11: Methodology
	Slide 12: Methodology
	Slide 13: Methodology
	Slide 14: Methodology
	Slide 15: Prevalence of Methods
	Slide 16: Prevalence of Methods
	Slide 17: Prevalence of Methods
	Slide 18: Frequency of Methods
	Slide 19: Frequency of Methods
	Slide 20: Correlation with Repository Attributes
	Slide 21: Correlation with Repository Attributes
	Slide 22: Evolution of Methods
	Slide 23: Evolution of Methods
	Slide 24: Takeaways and Future Work
	Slide 25: Conclusion

