Check for
Updates

An Empirical Evaluation of Method Signature Similarity in Java
Codebases

Mohammad Taha Khan
Washington and Lee University
Lexington, Virginia, USA
tkhan@wlu.edu

William Tobin
Washington and Lee University
Lexington, Virginia, USA
tobin24@mail.wlu.edu

Abstract

Modern programming languages have transformed software devel-
opment by providing capabilities of enhancing productivity and
reducing code redundancy. One such feature is allowing developers
to choose meaningful method names for implementation and func-
tionality. As programs evolve into APIs and libraries, developers
often design methods with similar signatures to streamline code
management and improve comprehensibility.

In this paper, we conduct a comprehensive study to evaluate
the prevalence, usage, and perception of methods with similar sig-
natures, including both conventionally overloaded and textually
similar methods. Through analyzing 6.4 million lines of code across
167 well-established Java repositories on GitHub, we statistically
assess the occurrence of these methods and their impact on usabil-
ity and software quality. Additionally, we explore the evolution of
these methods through a longitudinal analysis of historical commit
snapshots. Our research reveals that both overloaded and textually
similar methods are common in leading Java repositories and are
primarily driven by specific software design requirements, program
logic, and developer’s programming habits. As software matures,
development shifts towards maintenance tasks that rarely necessi-
tate design changes. Our longitudinal analysis corroborates this by
indicating minimal changes in methods with similar signatures in
the later stages of a repository’s life.

CCS Concepts

« Software and its engineering — Maintaining software; Soft-
ware evolution; Empirical software.

Keywords

software engineering, empirical measurements, software analysis,
code usability, naming conventions

This work is licensed under a Creative Commons Attribution International
4.0 License.

ASSE 2024, September 11-13, 2024, Tokyo, Japan
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1754-3/24/09
https://doi.org/10.1145/3702138.3702152

Mohamed Elhussiny
Washington and Lee University
Lexington, Virginia, USA
elhussinyh24@mail wlu.edu

Muhammad Ali Gulzar
Virginia Tech
Blacksburg, Virginia, USA
gulzar@vt.edu

ACM Reference Format:

Mohammad Taha Khan, Mohamed Elhussiny, William Tobin, and Muham-
mad Ali Gulzar. 2024. An Empirical Evaluation of Method Signature Sim-
ilarity in Java Codebases. In 2024 5th Asia Service Sciences and Software
Engineering Conference (ASSE 2024), September 11-13, 2024, Tokyo, Japan.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3702138.3702152

1 Introduction

In software development, method names play a critical role in
conveying the underlying semantics of a method’s function. As
software evolves into libraries, the API interfaces, particularly their
names, are often used interchangeably with documentation to un-
derstand the underlying functions. Consequently, best software
engineering practices advocate for meaningful and distinct method
names to enhance code management and comprehensibility. How-
ever, in the development process of large software systems, many
methods end up with highly similar signatures. Commonly, one
instance of this is method overloading, which results in sharing
names across multiple semantically dissimilar implementations
but with the same abstract functionality. For example, the meth-
ods String.substring(int) and String.substring(int, int)
are considered overloaded. Similarly, some method names, while
not identical, may be very similar due to the constraints of natu-
ral language representation, such as javax.sql.Rowset.getclob
and javax.sql.Rowset.getNclob, which are distinct in context
and implementation. Such similarities in method signatures are
intended for better comprehension, code management, and mean-
ingful variable names.

While method signature similarity is generally accepted as a
beneficial concept in software development, their overuse can lead
to increased code complexity, which can significantly impact us-
ability, especially in large and growing repositories [10]. Work in
other domains has also demonstrated that information overload
can cause cognitive limitations affecting productivity [12, 25]. In
this study, we build on this idea by specifically evaluating the in-
fluence of method signature similarity and its evolution through
empirical measurements. We examine whether an extensive pres-
ence of such methods can lead to confusion, potentially resulting
in unintentional misuse of the API and subsequent software bugs.
This risk is especially relevant given that these methods often have
largely overlapping parameters and can inadvertently introduce
latent bugs that are likely to slip through manual inspection, com-
pilation checks, and, in some cases, even test suites. Given this, it

https://orcid.org/0000-0003-4743-5610
https://orcid.org/0009-0007-7875-7133
https://orcid.org/0009-0008-5409-2920
https://orcid.org/0000-0002-8007-8662
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3702138.3702152
https://doi.org/10.1145/3702138.3702152
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3702138.3702152&domain=pdf&date_stamp=2024-12-29

ASSE 2024, September 11-13, 2024, Tokyo, Japan

is necessary to study how the presence of these methods affects
software quality.

For our study, the term signature similarity encompasses two
categories of similarly looking methods. The first comprises con-
ventionally overloaded methods with an identical name but varying
parameters. The second category includes method pairs that are tex-
tually similar, identified by a small edit distance among their names.
This metric is crucial for Java codebases, where the language’s case-
sensitive and object-oriented nature offers developers flexibility
in naming methods. However, this flexibility can result in method
names that are strikingly similar, with only subtle variations.

We design five research questions for this study, focusing on the
statistical prevalence of signature similarity in methods followed by
alongitudinal analysis of how such methods have evolved over time.
By answering these questions, we can better understand trends
among popular projects, including the long-term perceived utility
of such methods especially in the context of project maturity and
changes in developer perception.

We curated a selection of 167 public Java repositories from
GitHub with the highest number of stars, collectively containing a
total of 6.4 million lines of code. We utilize the GitHub Rest API to
access the source code of these projects at various stages of their
life cycle, represented by specific commit numbers. For our analysis,
we employ the popular Java static analysis tool, CK [5], to extract
the abstract syntax trees (ASTs) of the respective project classes.
These were then utilized to record method signatures and assess
their similarity. Section 3 provides a more detailed discussion of
our data collection and analysis.

Our statistical analysis reveals that across the studied reposito-
ries, an average of 5.1% of methods were conventionally overloaded.
This is a new finding that is slightly lower than the estimated value
of 13% in prior work [15] from 2010. Furthermore, we also observed
a prevalence of textually similar methods, with an average of 4.2%
of methods having a close edit distance with another method. Given
that these percentages are in line with the prevalence of overloaded
methods, it is crucial for programmers to utilize and name methods
appropriately to avoid confusion and error. While method overload-
ing is well-suited for constructor methods, we find that a majority of
overloaded methods are actually tied to specific design patterns and
project use cases. More notably, we identify that textual similarity in
methods frequently arises from naming conventions and, in certain
cases, poor naming practices that affect code maintainability.

Our longitudinal analysis highlights significant trends in method
signature evolution. Early-stage snapshots of repositories show
frequent changes in overloaded methods due to adaptive software
maintenance tasks like adding new features. As repositories mature,
the number of overloaded methods stabilizes, reflecting a shift to
bug fixes and optimizations. We also observe a notable decrease in
textually similar methods, suggesting that developers remove them
to reduce ambiguity and improve code quality.

To our knowledge, this study is the first to quantify the preva-
lence of method signature similarity in Java repositories, comparing
overloaded and textually similar methods and exploring their evo-
lution over time. While previous research has focused on method
overloading characteristics and API misuse due to poor documenta-
tion and copy-paste editing [17], we aim to understand how similar

Mohammad Taha Khan, Mohamed Elhussiny, William Tobin, and Muhammad Ali Gulzar

36

Repository Details Minimum Average Maximum
Methods per Repository 8 11744 126615
Classes per Repository 1 1992 20496
Methods per Class 1 6 4096
Lines of Code 13 84357 1188302
Number of Contributors 1 98 405
Repository Age (Days) 895 3303 5294
Repository Stars 3491 10263 40000

Table 1: Summary statistics of repositories in our dataset.

method signatures impact code usability and their evolution over
time.

2 Related Work

The study on understanding how method names impact developer
practices has long been an active area of research [8, 14, 22, 23].
The flexibility to select a particular name not only allows for better
comprehensibility [20] but also keeps the cost of code maintenance
low [13] while enabling more robust testing [22]. To study the ef-
fectiveness of naming methods, a recent study by Alsuhaibani et
al. conducted a survey of 1100 participants to examine the general
acceptance and practical usage of source code method naming stan-
dards [3]. Their findings revealed that most participants agreed
on the use of standards. Distinctively, another allied area of re-
search explores the use of overloaded methods, especially in Java
[4]. In 2010, Gil et al. surveyed overloaded methods in Java [15]
and found their widespread use in code repositories. Previous work
has suggested the restriction of overloaded methods [21] while
others have highlighted how overloading can cause encapsulation
flaws [7]. Our research builds upon previous studies and aims to
quantitatively identify the impact of both overloaded methods and
textually similar methods on developer practices. By broadening the
scope, we seek to gain a comprehensive understanding of how dif-
ferent naming choices influence and impact software development
processes.

3 Methodology

In this section, we describe our overall approach to collecting and
analyzing the repositories for our work. To study signature simi-
larity among methods, we selected Java as our language of choice.
The motivation behind this stemmed from Java’s object-oriented
design and its programmers’ ability to overload methods with ver-
satility. Additionally, the high-level nature of the language makes
it a popular choice for developing many projects that span multiple
domains, ranging from big data technologies to financial security
systems. Figure 1 provides a visual summary of our data collection
and analysis approach.

3.1 Data Collection

To accurately collect a dataset representative of large-scale de-
velopment in Java, we first ranked Java repositories on GitHub
based on their star count. Repository stars are a commonly used
indicator of a repository’s popularity and usage and have been
regularly used as a selection criterion in prior work [26]. From
these, we shortlisted 252 repositories per GitHub’s rate limits of

An Empirical Evaluation of Method Signature Similarity in Java Codebases

JSON I
/
Use CK tool to create
JSON files for each

class, and its
methods

v

GitHub |52

Download top GitHub
Java repositories

ASSE 2024, September 11-13, 2024, Tokyo, Japan

" |

Perform statistical
and longitudnal
analysis

ot

Extract all overloaded
and textually similar
methods

Figure 1: Data collection and extraction approach.

1,000 requests on searches. Upon manual review, we discovered
that some repositories only contained markdown content, while
others were incompatible with our analysis due to their large size.
For instance, elastic/elasticsearch has 4.4 million lines of code
that the CK [5] static analysis tool could not process. Consequently,
we finalized a selection of 167 Java projects for data collection.

We primarily used a Python script incorporating the GitHub
REST API to collect the latest master branch of the Java reposito-
ries. Our repositories had between 3,491 and 40,000 stars, which
strongly indicated widespread adoption. Despite some repositories
being incompatible with our analysis framework, our methodical
selection process guaranteed us access to large amounts of data
for analysis. Table 1 summarizes the characteristics of the final
167 repositories based on their most recent state at the time of our
data collection. In addition to performing statistical analysis on the
state of methods with similar signatures, we also intended to per-
form a longitudinal analysis of how these repositories had evolved
over time. From the total 167 repositories, we shortlisted 43 and
collected 25 historic commits for each, evenly distributed across
their lifetime. This approach enabled us to precisely examine the
changes in the repository’s contents while catering to variations
in development pace. By including commits from various stages,
we accounted for the tendency of most repositories to experience
rapid growth during their initial development phases and other
developmental spurts.

3.2 Method Extraction Approach

After collecting the source code of the repositories, we used the
CK code analysis tool [5] to extract relevant repository and class
metrics. Our choice of CK was grounded in its general acceptability
among research academia for analyzing Java repositories. To tailor
CK for our specific goals, we modified the main driver file, Run-
nerjava, to iterate over all the methods in the repositories. We then
created a hash table of the method-level metrics for all Java classes
that existed in the collected repositories. For each method, we gath-
ered detailed metadata, including its name, frequency within the
class, input parameter order and types, return type, and inheritance
hierarchy specifics.

Under the umbrella term of signature similarity, we categorized
our methods into two distinct groups. The first group included
conventionally overloaded methods, which have the same name
but different parameters. Figure 2a provides an example of such
methods in the utils.Array class of the OpenJDK11 [2] repository.
The second group comprised methods with textually similar names,
as shown in Figure 2b. While identifying overloaded methods was
straightforward, we needed to devise a strategy to detect these

37

textually similar methods. To accomplish this, we employed the
Levenshtein distance approach [19] and measured the edit distance
between pairs of methods within the same Java class. This technique
allowed us to account for deletions, insertions, and substitutions
in method names. We then isolated pairs of methods with an edit
distance of one or two, indicating a high degree of textual similarity.
This methodology enabled us to categorize and analyze methods
based on their signature similarities effectively.

We further filtered the pairs by matching their argument names,
types, and order, as well as their return type and the type of the
associated class. This additional step enabled us to uniquely iden-
tify pairs that could potentially be misused by developers, who
might inadvertently swap their usage due to human error. Such
mistakes can remain undetected by compilers, which are typically
only adept at identifying incompatible parameters and return types.
Figure 2b provides two distinct methods, both belonging to the
ClearOperation class in the HazelCast [1] repository, a popular
Java library for data processing. Although we also extracted combi-
nations with an edit distance of three and four, we excluded them
from our analysis because, at such distances, the methods are no
longer textually similar and are unlikely to be mixed up.

4 Results

We performed an extensive empirical analysis to evaluate the preva-
lence and evolution of methods with similar signatures and also
provided a comparison between conventionally overloaded and
textually similar methods. We curated five distinct research ques-
tions (RQs) that allowed us to gather insights from the collected
data. The following list provides the details of each investigative
question:

= RQ 1: What is the prevalence of methods with similar signatures

in top Java repositories?

» RQ 2: For methods with similar signatures, how many instances
of such methods exist?

= RQ 3: What are the most common methods with similar signa-
tures across repositories?

RQ 4: Is there a correlation between repository attributes and
the prevalence of methods with similar signatures?

= RQ 5: How often does the number of methods with similar
signatures change across the lifecycle of a software repository?

Our research questions can be divided into two distinct cate-
gories. RQs 1 through 4 focus on statistical analysis of the present
state of the repositories. RQ 5 enables us to perform a longitudinal
analysis, allowing us to understand the evolution of methods with

ASSE 2024, September 11-13, 2024, Tokyo, Japan

package java.util;
class Array {
/).
public static void parallelSort(short[] a) {
int n = a.length, p, g;
if (n <= MIN_ARRAY_SORT_GRAN ||
//
¥

public static void parallelSort(int[] a) {
int n = a.length, p, g;

if (n <= MIN_ARRAY_SORT_GRAN ||

//
}

(a) Overloaded methods parallelSort in utils.Array class
in OpenJDk11 [2].

Mohammad Taha Khan, Mohamed Elhussiny, William Tobin, and Muhammad Ali Gulzar

public class ClearOperation {
@Override
public int getSyncBackupCount() {
return mapServiceContext
.getMapContainer (name)
.getBackupCount ();
3

@Override
public int getAsyncBackupCount() {
return mapServiceContext
.getMapContainer (name)
.getAsyncBackupCount ();
3

(b) Textually similar methods getAsyncBackupCount and
getSyncBackupCount in the HazelCast [1] repository.

Figure 2: Example instances of overloaded and textually similar methods in classes, extracted from our repository dataset.

€
3
Q
S
[72]
2
S
a
[
Q
(6]
&
I | |
5 10 15 20 5

Percentage (%) of Overloaded Methods

(a) Overloaded Methods

140
120
100
80
60
40
20

Il Edit Distance = 1
I Edit Distance = 2

Repositories Count

0 5 10 15 20 25 30
Percentage (%) of Textually Similar Methods

(b) Textually Similar Methods

Figure 3: Histogram showing the distribution of repositories based on the percentage of methods with similar signatures. The
x-axis represents the percentage of overloaded methods, while the y-axis shows the count of repositories in the dataset.

similar signatures. This approach allows us to identify trends and
changes in coding practices, which can serve as indicators of util-
ity and code quality. We next report our findings for each of the
research questions.

RQ1 : What is the prevalence of methods with similar signa-
tures in top Java repositories?

To better understand the use of methods that are either con-
ventionally overloaded or textually similar, we performed static
analysis on the codebase metadata. We extracted all the methods
present in each class across all repositories and then performed an
aggregation. We primarily report our results on a repository level
for ease of comprehension.

Figure 3a provides insight into the distribution of overloaded
methods in our dataset. On average, a total of 5.13% of methods
were overloaded per repository. This value is slightly lower than
previous work from 2010 [15], showing a slight decrease in the
prevalence of overloaded methods in modern repositories. Addi-
tionally, it can be noted that the majority of repositories had an
overloaded percentage between 0% and 10%, with some repositories
having as high as 27% overloaded methods. These outliers exist due

38

to certain repositories having significantly more overloaded meth-
ods. For instance, the project jhy/jsoup is an HTML parser that
uses a visitor pattern that solely relies on Java method overloading
to define unique operations for different node types in HTML. As a
result, the project uses a high percentage of overloaded methods.

Figure 3b shows the distribution of methods that were textually
similar. On average, 4.1% of methods per repository were textually
similar, indicating a presence comparable to that of overloaded
methods. While the majority of repositories had less than 10% tex-
tually similar methods, there were some exceptions with over 30%.
One particular outlier was the GraalVM’s repository graal, a high-
performance JDK distribution. The source code of this repository
contained variants of the run method with different numerical
suffixes, likely invoked for parallel computation.

Further observing Figure 3b, there is a notable peak around the
lower percentage of textually similar methods, indicating that while
such methods are prevalent in many repositories, their percent-
ages are generally low. Additionally, when comparing different edit
distances, there are more repositories with a low percentage of
edit distance 1 compared to edit distance 2. This is intuitive, as
increasing the edit distance value generates more similar method
pairs.

An Empirical Evaluation of Method Signature Similarity in Java Codebases

Distinct Instances Count

Nl N2 B3 B4+
Overloaded Methods
Edit Distance = 1
Edit Distance = 2
0 20 40 60 80 100

Percentage (%) of Method Instances

Figure 4: Number of instances of methods with similar sig-
natures.

Finding. Both overloaded and text textually similar methods have
a prevalence in leading Java repositories. Textually similar methods
tend to follow a similar distribution trend as overloaded methods.

RQ2: For methods with similar signatures, how many in-
stances of such methods exist?

Multiple similar methods are likely to cause confusion and po-
tential errors in development. To explore this, we analyzed unique
instances of methods with similar signatures. For example, if a
method is overloaded multiple times, it can lead to confusion and
incorrect method calls. Developers face challenges distinguishing
such methods due to subtle differences in input parameters. The
same is true for textually similar methods, where a slight typograph-
ical error may not raise compiler errors if another valid textual
variant method with the same parameters and return type exists.

Figure 4 quantifies the number of instances of methods with

similar signatures. For overloaded methods, we look at the num-
ber of times a given method is overloaded across all repositories.
For textually similar methods, we count how many times a given
method appeared in distinct method pairs generated at a fixed edit
distance of 1 and 2. 94% of the methods are overloaded three times
or less, suggesting a drop-off in the number of methods overloaded
a higher number of times. This trend is slightly divergent for textu-
ally similar methods. For both edit distance variants (1 and 2), we
see that approximately 70% of methods are present in three or fewer
distinct pairs, whereas 30% of the methods exist in four or more
distinct pairs. This higher percentage suggests a diverse range of
method variations with only minor textual differences. This finding
suggests as that edit distance among method pairs increases, the
overall trend in the frequency of distinct pairs remains consistent,
suggesting that when developers are naming new methods, they
are likely to choose names that are closely related to those that
already exist rather than creating entirely new names.
Finding. It is uncommon for a method to be overloaded more than
three times. However, method variations with small edit distances are
more widespread. This suggests developer practices involve naming
multiple methods with closely related names.

RQ3: What are the most common methods with similar sig-
natures across repositories?

39

ASSE 2024, September 11-13, 2024, Tokyo, Japan

Overloaded | Methods with Methods with
Methods Edit Distance 1 Edit Distance 2

visit runx getMxx

create testx mxx

malloc getx **activate

Buffer setx *xserializeStateData

fetch componentx *xregister

Table 2: Top methods with similar signatures in our dataset in
descending order. The * represents the replacement, deletion,
or substitution of a character in the name.

Following up on the previous research question, we study the
most frequent methods with similar signatures. This analysis in-
volves extracting the names of the methods, followed by a manual
investigation of the codebase to understand the project’s purpose.
Table 2 enumerates the names of the methods with similar signa-
tures that were most prevalent across the repositories.

One of the commonly listed overloaded methods is visit, of-
ten used in visitor design patterns. Similarly, the create method
is associated with the factory design pattern, commonly used to
construct appropriate objects in an application. Other examples
of prevalent methods include malloc and Buffer, which are fre-
quently overloaded for variations in memory management, as well
as methods related to I/O operations such as fetch.

Almost all such methods with close textual similarity were arti-
facts of naming conventions. When writing code, developers often
append a suffix to an existing method name to create a new method
with a similar but slightly different name, avoiding the effort to
pick a semantically representative name. For instance, the meth-
ods component1 and component? in the Java repositories JOOQ and
web3j were used to manipulate and access elements in the tuple
structure. Most textually similar methods with an edit distance
of 1 fall into this category. Since this practice is often applied to
internal private methods not exposed as external APIs, developers
are less inclined to follow meaningful naming conventions for such
methods, opting to add suffixes. However, prior work has shown
that poor naming conventions can significantly harm code usability
and maintenance and lead to improper method usage [9, 14].

Another interesting insight into textually similar method names
is the extensive use of the camel case naming convention, which
uses a mixture of upper and lower case letters without spaces or
underscores, e.g., getUserName. Camel case method names tend
to have closer edit distances due to the absence of delimiters be-
tween words. In contrast, snake case naming uses lowercase letters
with words separated by delimiters, which are usually underscores,
e.g., get_user_name. As snake case naming results in larger edit
distances due to the presence of delimiters, we suggest that when
working with larger codebases, developers should adopt snake case
as it leads to more distinction between names by increasing the
edit distance and consequently improving code readability, while
also minimizing sources of error and confusion.

Finding. Methods with similar signatures are often tied to specific
use cases and design patterns, with overloading primarily driven by
these requirements. Textual similarity in methods frequently arises
from naming conventions like camel case and suffix addition, leading

ASSE 2024, September 11-13, 2024, Tokyo, Japan

Mohammad Taha Khan, Mohamed Elhussiny, William Tobin, and Muhammad Ali Gulzar

30
25
20
15

X

10

x

5ex

Percentage (%) of Methods

%)

-8 Overloaded

= 30 X Edit Distance = 1

% 25 + Edit Distance = 2

2 20

X

o 15

=) x

& 104

& ¥ .

e 5 [&T,&" f x ;

[0 e % ., x X % o¢

o 0 “}‘ Fx ko, L x, 3 & A M %
0 20 40 60 80 100 120

140 0

X xoe

%
SRy X oKy
0 R

x

x
x
XX

Overloaded
X Edit Distance = 1
+ Edit Distance = 2

. «
«
o

, g L ot 0
R gk x axtr ¥t x4 %

100

200 300 400

Total Number of Methods (103)

(a) Total Methods in a Repository

Number of Contributors

(b) Number of Contributors in a Repository

Figure 5: Scatter plot showing the percentage distribution of methods with similar signatures across repository metrics. The

x-axis represents the studied metric, while the y-axis indicates the percentage of methods in the repositories.

20%

Snapshots (Older to More Recent)

(a) Overloaded Methods

-20%

F— e -
Q| = —— 10% 4 —a=__-— =
S| —m—— A o
= —_— 0% 3 — TEEE—— =
<3 — Q| = d=__ —
§ | STl ——) ————— =,
O] — -10% o f—

— — = —m - -

Snapshots (Older to More Recent)

(b) Pairs with Edit Distance 1

20%

10%

0%

-10%

-20%

Repositories

Snapshots (Older to More Recent)

(c) Pairs with Edit Distance 2

20%

10%

0%

-10%

-20%

Figure 6: Heatmaps showing the percentage change in methods with similar signatures across 25 sampled snapshots spaced

over the lifetime of the repositories.

2 39S
S
§ “\fmu“" -0.082 -0.012 0.026
<
£ o] -0.166 0.047 0.066
© Overloaded Edit Distance 1 Edit Distance 2

Percentage of Similar Signature Methods

Figure 7: Correlation coefficients across repository metrics.

to poor naming practices that can negatively impact code usability
and maintenance.

RQ4: Is there a correlation between repository attributes and
the prevalence of methods with similar signatures?

We evaluate how methods with similar signatures correlate with
certain characteristics of a repository, such as the total methods,
contributors, and repository stars. The total method metric relates
to repository growth, whereas contributors are a proxy for collabo-
rative projects, and the stars represent popularity. Figure 7 provides
a heat map of correlation coefficients across the studied metrics.

The percentage of methods with similar signatures in a reposi-
tory shows a weak correlation with both the total number of meth-
ods and contributors, with the highest coefficient value being just
0.212. This is understandable, as such methods are usually created
due to programming requirements and constraints rather than the
collaborative nature or overall growth of the projects.

40

We further investigate this phenomenon through scatter plots
shown in 5. While the total number of methods increases across
various repositories, this does not influence the frequency of either
overloaded or textually similar methods, as seen in 5a. This indi-
cates that code size does not affect the frequency of these methods,
and their percentages tend to stay consistent under 10% for most
repositories. This suggests that developers apply overloading ju-
diciously within specific contexts and design patterns rather than
as a general practice across all methods. Additionally, textually
similar methods are used in specific contexts like getters, setters,
or state toggles rather than as a core software design practice such
as polymorphism in general-purpose software.

The same is true for total contributors, as shown in 5b. The

number of individuals collaborating on a project does not neces-
sarily determine the number of methods with similar signatures.
This suggests that the nature of the project influences the methods’
signatures more than the number of contributors. For example,
simpler projects or those with well-defined scopes may naturally
have fewer similar methods, while more complex projects might
require more unique and varied methods.
Finding. The size of the repository, number of contributors, or reposi-
tory’s popularity does not determine the usage of methods with similar
signatures. It is based on the programming context, coding structure,
and the requirements of a project.

RQ5: How often do methods with similar signatures change
across the lifecycle of a software repository?

An Empirical Evaluation of Method Signature Similarity in Java Codebases

We extend our empirical investigation with a longitudinal anal-
ysis of the percentage of methods with similar signatures across
a repository’s entire lifecycle. We take 25 evenly distributed snap-
shots of a one-quarter random sample of the repositories in our
dataset. In total, we apply our analysis to 1075 snapshots across 43
repositories. We aim to learn two insights from this longitudinal
investigation: (1) when and why methods with similar signatures
were introduced in the repository lifecycle and (2) how the usage
of the new and existing methods with similar signatures changes
as repositories evolve. Figure 6 summarizes this analysis in three
heatmaps, representing the percentage of chance of methods with
signature similarity across the 25 snapshots. On a color spectrum
of red to blue, red represents a high percentage decrease, and blue
represents a high percentage increase.

Figure 6a presents the results from the longitudinal analysis of
the usage of overloaded methods. We observe frequent noticeable
changes, both increase and decrease, in the number of overloaded
methods in the earlier phases of the lifecycle of repositories. Such
noticeable changes are rarely seen in the later stages, i.e., more
recent snapshots. These observations clearly reflect the evolution
and maintenance practices of the software. Earlier snapshots of the
repositories often represent adaptive software maintenance, which
entails adding new features and new functionality [11]. These types
of changes warrant the use of overloaded methods owing to soft-
ware logic and design needs, which are the primary reasons for
using method overloading principles.

As repositories mature, the number of overloaded methods stabi-
lizes. This is intuitive because most code changes in mature reposito-
ries are preventative, corrective, and perfective software maintenance
tasks that include bug fixes and performance optimizations [11].
These tasks rarely require software design changes, and thus, new
overloaded methods are rarely introduced during these stages.

Figure 6b and 6c present results from analyzing methods textu-
ally similar methods across 25 snapshots. Generally, changes in the
number of methods textually similar are observed to be dispersed
across the entire lifecycle of the repositories. However, a key obser-
vation is that both figures are dominated by red slots, indicating
a significant decrease in methods with edit distances of 1 and 2
in their signatures. In most of these repositories, developers tend
to remove methods with similar signatures, suggesting that such
methods are discouraged as repositories evolve. Initially, many of
these methods may be introduced for quick prototyping and during
agile software development cycles. However, as the software main-
tenance phase begins, as early as the initial commit, developers tend
to remove methods with similar signatures to reduce ambiguity
and API misuse in the code, thereby improving code quality.

In two specific repositories, awesome-java-leetcode and

from-java-to-kotlin, we find absolutely no change in the num-
ber of textually similar methods. Upon manual investigation, we
find that both repositories are training projects that were initially
created by uploading the entire source code in one commit. All later
commits only include documentation changes.
Finding. Both overloaded and textually similar methods are often
introduced early in development, reflecting frequent design changes.
As the code matures, maintenance tasks rarely involve modifying
overloaded methods, and developers tend to remove textually similar
methods, showing a preference for cleaner code.

41

ASSE 2024, September 11-13, 2024, Tokyo, Japan

5 Discussion

Our study reveals that carefully designed overloaded methods en-
hance utility by maintaining consistent naming for different use
cases. We suggest that developers standardize naming practices
early on in large-scale projects to avoid later confusion and fixes.
Project managers should consider using build tools like Maven [6]
with code style checkers like CheckStyle [24] to enforce stricter
naming conventions. Additionally, to prevent misuse, test meth-
ods with similar signatures should be implemented in separate
classes as part of test suites. We also suggest that developers use
automated tools for generating variable names and documenta-
tion [16, 18]. These tools analyze methods’ code to suggest suitable
names and documentation. This minimizes cognitive load, reduces
the occurrence of textually similar methods, and ultimately leads
to improved code quality from the beginning, ensuring long-term
maintainability as the project evolves.

Our study offers a detailed empirical overview of method signa-
ture similarity but was limited by computational resources, restrict-
ing our longitudinal analysis to a subset of repositories. Additionally,
it does not account for the diverse developer practices and coding
standards across various teams and projects, which can influence
the use and management of method signatures. Building on our
current findings, future work will involve user studies where par-
ticipants program in sandboxed environments with similar method
signatures to analyze their impact on usability and error rates. We
also plan to identify commits with significant changes in method
signature similarity and examine related GitHub issues and commit
notes. This will help us understand the reasons and motivations
behind these changes, providing deeper insights into the practical
implications and informing best practices in software development.

6 Conclusion

This study provides a comprehensive analysis of method signature
similarity in Java codebases, focusing on both overloaded and tex-
tually similar methods. By examining 167 repositories, we have
highlighted the prevalence of these methods and their implications
for software usability and quality. Our findings reveal that while
method overloading and textual similarity are common practices,
they often arise from specific use cases and developer conventions.
As projects mature, the occurrence of these methods stabilizes, em-
phasizing the importance of careful method naming and design
choices to enhance code maintainability and reduce potential errors.

References

[1] 2023. Hazelcast: In-Memory Data Grid. https://github.com/hazelcast/hazelcast.

[2] 2024. OpenJDK 11. https://openjdk java.net/projects/jdk/11/.

[3] ReemS. Alsuhaibani, Christian D. Newman, Michael J. Decker, Michael L. Collard, and Jonathan I. Maletic. 2021. On
the Naming of Methods: A Survey of Professional Developers. In Proceedings of the 43rd I I Conference on
Software Engineering (Madrid, Spain) (ICSE "21). IEEE Press, 587-599. https://doi.org/10.1109/ICSE43902.2021.00061

[4] Davide Ancona, Elena Zucca, and Sophia Drossopoulou. 2000. Overloading and inheritance in Java. In 2th Workshop
on Formal Techniques for Java Programs.

[5] Mauricio Aniche. 2024. CK: Code Metrics for Java code by means of static analysis.
mauricioaniche/ck. GitHub repository.

[6] Apache Maven Project. 2024. Maven - Welcome to Apache Maven. https://maven.apache.org/. Accessed: 2024-06-24.

[7] Antoine Beugnard and Salah Sadou. 2007. Method Overloading and Overriding Cause Distribution Transparency
and Encapsulation Flaws. 7. Object Technol. 6, 2 (2007), 31-45.

[8] Simon Butler. 2012. Mining Java class identifier naming conventions. In 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 1641-1643.

[9] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2010. Exploring the Influence of Identifier Names

on Code Quality: An Empirical Study. In 2010 14th European Conference on Software Maintenance and Reengineering.

156-165. https://doi.org/10.1109/CSMR.2010.27

Jiirgen Borstler, Ulrike Mettin, Marian Petre, and Marie Nordstrom. 2018. Developers Talking About Code Quality:

The Role of Structure and Complexity in Software Maintainability. Empirical Software Engineering 23, 4 (2018),

2075-2105. https://doi.org/10.1007/s10664-017-9571-3

Ned Chapin, Joanne E. Hale, Khaled Md. Khan, Juan F. Ramil, and Wui-Gee Tan. 2001. Types of software evolution

and software maintenance. Journal of Software Maintenance and Evolution: Research and Practice 13, 1 (2001), 3-30.

htps://github.com,

[10]

[11]

https://github.com/hazelcast/hazelcast
https://openjdk.java.net/projects/jdk/11/
https://doi.org/10.1109/ICSE43902.2021.00061
https://github.com/mauricioaniche/ck
https://github.com/mauricioaniche/ck
https://maven.apache.org/
https://doi.org/10.1109/CSMR.2010.27
https://doi.org/10.1007/s10664-017-9571-3

ASSE 2024, September 11-13, 2024, Tokyo, Japan

[12]

[13]
[14]

[15]
[16]
[17]
[18]
[19]

https://doi.org/10.1002/smr.220

Martin J. Eppler and Jeanne Mengis. 2004. The Concept of Information Overload: A Review of Literature from

Organization Science, Accounting, Marketing, MIS, and Related Disciplines. The Information Society 20, 5 (2004),

325-344. https://doi.org/10.1080/01972240490507974

Len Erlikh. 2000. Leveraging legacy system dollars for e-business. IT professional 2, 3 (2000), 17-23.

Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola Adesope. 2018. The effect of poor source code lexicon

and readability on developers’ cognitive load. In Proceedings of the 26th Conference on Program Comprehension

(Gothenburg, Sweden) (ICPC ’18). Association for Computing Machinery, New York, NY, USA, 286-296. https:
doi.org/10.1145/3196321.3196347

Joseph Gil and Keren Lenz. 2010. The use of overloading in Java programs. In ECOOP 2010-Object-Oriented

Programming: 24th E Conf ., Maribor, Slovenia, June 21-25, 2010. Proceedings 24. Springer, 529-551.

GitHub. 2024. GitHub Copilot. https://github.com/features/copilot. Accessed: 2024-06-24.

Zuxing Gu, Jiecheng Wu, Jiaxiang Liu, Min Zhou, and Ming Gu. 2019. An empirical study on api-misuse bugs

in open-source ¢ programs. In 2019 IEEE 43rd annual computer software and applications conference (COMPSAC),

Vol. 1. IEEE, 11-20.

Xu Hu, Guoliang Li, Xin Xia, and et al. 2020. Deep code comment generation with hybrid lexical and syntactical

information. Empirical Software Engineering 25 (2020), 2179-2217. https://doi.org/10.1007/s10664-019-09730-9

Vladimir I. Levenshtein. 1966. Binary codes capable of correcting deletions, insertions, and reversals. Soviet physics

doklady 10, 8 (1966), 707-710.

Mohammad Taha Khan, Mohamed Elhussiny, William Tobin, and Muhammad Ali Gulzar

4

[20]

[21]
[22]
[23]
[24]

[25]

[26]

Kui Liu, Dongsun Kim, Tegawendé F Bissyandé, Taeyoung Kim, Kisub Kim, Anil Koyuncu, Suntae Kim, and Yves

Le Traon. 2019. Learning to spot and refactor inconsistent method names. In 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE). IEEE, 1-12.

Bertrand Meyer. 2001. Overloading vs. object technology. Journal of Object Oriented Programming 14, 4 (2001),

3-7.

Anthony Peruma, Emily Hu, Jiajun Chen, Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Christian D New-

man. 2021. Using grammar patterns to interpret test method name evolution. In 2021 IEEE/ACM 29th International
1f on Program Comprehension (ICPC). IEEE, 335-346.

Armstrong A Takang, Penny A Grubb, Robert D Macredie, et al. 1996. The effects of comments and identifier

names on program comprehensibility: an experimental investigation. J. Prog. Lang. (1996), 143-167.

Checkstyle Team. 2024. Checkstyle. http://checkstyle.sourceforge.net/. Accessed: 2024-06-24.

Mari Vartiainen, Riitta Hakala, Eeva Hakulinen, and Lasse Keskinen. 2021. Effects of a Cognitive Ergonomics

Workplace Intervention (CogErg) on Cognitive Strain and Well-being: A Cluster-randomized Controlled Trial. A

Study Protocol. BMC Psychology 9, 1 (2021), 54. hitps:/doi.org/10.1186/540359-021-00550-3

Ratnadira Widyasari, Zhou Yang, Ferdian Thung, Sheng Qin Sim, Fiona Wee, Camellia Lok, Jack Phan, Haodi

Qi, Constance Tan, Qijin Tay, and David Lo. 2023. NICHE: A Curated Dataset of Engineered Machine Learning

Projects in Python. arXiv:2303.06286 [cs.SE] arXiv preprint.

https://doi.org/10.1002/smr.220
https://doi.org/10.1080/01972240490507974
https://doi.org/10.1145/3196321.3196347
https://doi.org/10.1145/3196321.3196347
https://github.com/features/copilot
https://doi.org/10.1007/s10664-019-09730-9
http://checkstyle.sourceforge.net/
https://doi.org/10.1186/s40359-021-00550-3
https://arxiv.org/abs/2303.06286

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Collection
	3.2 Method Extraction Approach

	4 Results
	5 Discussion
	6 Conclusion
	References

